

LA-UR-21-27865

Approved for public release; distribution is unlimited.

Title: Detecting Electrical Anomalies via Overlapping Measurements

Author(s): Sontowski, Sina

Intended for: ISTI Final Presentation, 2021-08-05 (Los Alamos, New Mexico, United

States)

Issued: 2021-08-05

Detecting Electrical Anomalies via Overlapping Measurements

Sina Sontowski Mentors: Nigel Lawrence, Deepjyoti Deka

August 1st, 2021

A street in Ukraine during a blackout after an attack on the power grid

Overview

Background
Time Series
Anomaly
Detection

Overview of my Research and Importance

Results and Conclusion

Monthly beer sales in millions of barrels

Rstudio-pubs.org, Statista.com

My research

Start

Multiple independent systems with electrical measurements

Method

Anomaly Detection

Goal

Improve speed/accuracy

and validate measurements

Main Contributions

Dealing with overlapping electrical measurements and validate them

Compare results of anomaly detection algorithms

Improve accuracy/speed of anomaly detection (work in progress)

About the electrical measurements

Our Approach

Similarity Timeseries

> • Dynamic Time Warping

Anomaly Detection

> • AR, Level Shift, Rolling Average

Simulate **Anomaly**

- Add random noise
- GAN

Why our Research is Unique

Dynamic Time Warping (DTW)

Representative Sample

Step Size

 Taking every second point

Certain Point **Amount**

• First 200 Points

Date Range

Three days

Run-time of Step size runs

Run Number	HIST steps	ION steps	Run-time (s)
1	100	2	2318.6
2	1000	1	616.7
3	1000	2	342.8
4	2000	2	222.6
5	3000	4	108.6
6	5000	7	65.7

Table 1: Step Size Running Times.

Run-time of Point Amount and Date Range

Run Number	Point Amount	Run-time (s)
7	100	24.3
8	200	38.6

Table 2: Point Amount Running Times.

Run Number	Date Range	HIST steps	ION steps	Run-time (s)
9	3 days	50	1	191.8

Table 3: Date Range Running Times.

Anomaly Detection

Level Shift Rolling Average Autoregression

Steps: 100 HIST

2 ION

Runtime: 2318.579178094864

0.0 : ['ION_4-3472', 'HIST_40_S']

0.9019789354524411 : ['ION_5-139', 'HIST_40_S'] 3.1622776601683795 : ['ION_4-3472', 'HIST_44_S'] ['ION_5-139', 'HIST_44_S'] 3.272547325860909 : 4.47213595499958 : ['ION_6-6', 'HIST_44_S'] ['ION_6-4', 'HIST_44_S'] 6.928203230275509 :

9.382502917665077 : ['ION 6-139', 'HIST 32 S

Results

```
Steps:
```

100 HIST

2 ION

Runtime: 2318.579178094864

Results

```
0.0 : ['ION_4-3472', 'HIST_40_S']
```

```
0.9019789354524411 :
                       ['ION_5-139', 'HIST_40_S']
3.1622776601683795
                       ['ION_4-3472', 'HIST_44_S']
                      ['ION_5-139', 'HIST_44_S']
3,272547325860909
4.47213595499958 :
                     ['ION_6-6', 'HIST_44_S']
                      ['ION_6-4', 'HIST_44_S']
6.928203230275509
9.382502917665077 :
                      ['ION 6-139', 'HIST 32 S']
```


time

Future Work

Simulate **Artificial Anomaly**

Steps: 100 HIST 2 ION

Runtime: 2318.579178094864

0.0 : ['ION_4-3472', 'HIST_40_S']

0.9019789354524411 : ['ION_5-139', 'HIST_40_S'] 3.1622776601683795 : ['ION_4-3472', 'HIST_44_S']

['ION_5-139', 'HIST_44_S'] 3.272547325860909 :

4.47213595499958 : ['ION_6-6', 'HIST_44_S']

6.928203230275509 :

9.382502917665077 : ['ION 6-139', 'HIST 32

time

Conclusions

